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When complete, the Grand Ethiopian Renaissance Dam (GERD) will be the largest

hydropower dam in Africa. The GERD has become a focal point of geopolitical tensions

because it will allow Ethiopia greater control over the Blue Nile River, Egypt’s main

source of freshwater. To inform discussions of filling plans and responses, we created

a probabilistic seasonal forecast for Upper Blue Nile rainfall and streamflow in the GERD

basin. Eight statistical models and eight dynamical models were used to forecast the rainy

season (June–September), which were then converted into river flow for June–December

2018. Both statistical and dynamical models predicted a high probability of average

to above average rainfall as well as Upper Blue Nile flow in the GERD basin. Actual

summer precipitation in 2018 was slightly below the long-term mean but well within

the range considered to be “near normal.” Leveraging the increasingly online media

landscape for science communication, we made the forecast publicly available through

a blog and shared with regional decision-makers in advance of the 2018 rainy season.

The blog attracted news coverage in the region focusing primarily on the relatively low

likelihood of below-average Nile flow across the forecast ensemble. When asked for

feedback on the blog, Ethiopian decision-makers and forecasters reported that flow

predictions included in our blog were useful and not part of existing products. Access

and comprehension were noted barriers to the use of these types of forecasts, consistent

with prior research in forecast communication and dissemination. Forecasts available

on such blogs can inform a shared understanding among decision-makers in the

management of transboundary waters, yet effective communication and dissemination

remain a challenge.

Keywords: seasonal forecasting, blog, Grand Ethiopian Renaissance Dam, science communication, hydropower,

Horn of Africa, East Africa, probabilistic forecast
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INTRODUCTION

Soon to be the largest hydropower dam in Africa, the
controversial Grand Ethiopian Renaissance Dam (GERD) will
allow Ethiopia greater control over the Blue Nile River, Egypt’s
main source of freshwater. The GERD is expected to have the
capacity to generate 15,000 gigawatt hours/year (SaliniImpregilo,
2014), substantially increasing Ethiopia’s power generation
capacity for both use within Ethiopia and export to neighboring

countries. The merits of placing a large hydropower dam at the
GERD site have been discussed and debated for decades. The

site was first formally identified in a survey by the United States
Bureau of Reclamation (USBR, 1964), and it was included in
analyses of hydrodevelopment of the Nile Basin well prior to the
beginning of construction (Blackmore and Whittington, 2008).
Ethiopia formally announced its intentions to construct the
GERD in 2011, and, since that time, many studies have examined
the potential impacts of the project on Ethiopia, on downstream
riparians Sudan and Egypt, and on the East African power grid
(Chen and Swain, 2014; Mulat and Moges, 2014; Satti et al., 2015;
Tawfik, 2016; Wheeler et al., 2016).

To begin generating electricity, Ethiopia must fill the 74
cubic kilometer reservoir behind the GERD, which will impact
downstream countries including Sudan and Egypt (King and
Block, 2014; Zhang et al., 2016). If the filling of the reservoir
occurs during years without much rain, Nile flows could be
substantially reduced. This possibility has fueled speculation
about the potential for a “water war” in the region (BBC,
2018). In contrast, reservoir filling that occurs during wet years
may be felt less acutely downstream. Ethiopia has vowed to
fill the GERD without causing significant harm to downstream
countries, but, in trilateral meetings with Egypt and Sudan, the
three countries have struggled to agree on what this means
(The New Times, 2018). There have been calls for an agreement
among affected countries to be made before filling of the GERD
begins (Zhang et al., 2016).

With GERD reservoir filling initially expected to begin
during the summer of 2018, we developed a seasonal forecast
for Upper Blue Nile rainfall and streamflow at the GERD
and made the forecast publicly available on a blog in May
2018. Our aim in publishing our forecast on a blog was to
provide decision-makers with timely access to our findings and
to further the regional conversation on filling. The shifting
media landscape and rise of online news environments has
altered the traditional interface between scientists and the public,
resulting in more people turning to online environments, such
as blogs, for science news (Brossard and Scheufele, 2013; Luzón,
2013). While these changes introduce challenges for science
communication best practice, they also open up avenues for
decision-makers to connect with science and access relevant
content. Some research has suggested that blogs may serve as
“boundary layers” to enhance communication and knowledge
sharing between scientists and the public and allow greater
engagement or active interaction that moves beyond a top-
down traditional communication approach (Shanahan, 2011).
Others have explored how blog formats allow researchers to
contextualize knowledge to share with more diverse audiences

than traditional formats allow (Luzón, 2013). Given this
shifting communication landscape, we decided to share our
Upper Blue Nile rainfall and streamflow forecasts with
prospective decision-makers through an easily-accessible online
blog format.

In a surprise to many observers, Ethiopia did not begin filling
the GERD reservoir in 2018, as the project was behind schedule.
Filling is now expected to commence in 2020 or soon after.
While the effort to characterize, explain, and predict rainfall in
the Ethiopian Blue Nile is an active focus of climate research
(see reviews by Berhane et al., 2014; Nicholson, 2017), the
forecasting tools developed in these academic studies are not
operational. There are existing operational forecasts, such as the
Famine Early Warning System (FEWS), the Greater Horn of
Africa Climate Outlook Forum (GHACOF), and the Ethiopian
National Meteorological Agency forecast products, however
these are not hydrological and they do not specifically target the
GERD basin.

Next, we describe the Upper Blue Nile Basin upstream of
the GERD, followed by an introduction of our probabilistic
forecasts for summer rainfall in the GERD basin. We used
eight statistically-based and eight dynamically-based forecast
models which were converted to Upper Blue Nile streamflow
forecasts using a water balance model. We then describe our
communication of the forecast using the blog and present
our quantitative and qualitative evaluation of both the forecast
and blog.

DATA AND METHODS

GERD Basin
The Ethiopian Blue Nile, or Abay River, is located in the western
part of Ethiopia (Figure 1). In this region, most rainfall occurs
during the summer kiremt season, which extends from June-
September. Strong spatial and temporal variability in rainfall
exists across the mountainous basin, with an average seasonal
rainfall of 760mm (Zhang et al., 2018). Given the relative wealth
in water resources, a majority of the nation’s agriculture and
infrastructure are located in this basin (Awulachew et al., 2007).
The strong seasonality of precipitation in the region, a tendency
for intense convective storms during the rainy season, steep
topography, and a lack of water control infrastructure on the
main stem of the river all conspire to make the Ethiopian
Blue Nile a highly seasonal and flood-prone river (Berhane
et al., 2014). This flashiness has been both a resource and a
curse to downstream countries. Flood recession agriculture is
practiced on the Sudanese Blue Nile and, prior to construction
of the High Aswan Dam, was a critical mode of cultivation
in Egypt. At the same time, Blue Nile flooding is a risk to
communities in Sudan, including Khartoum, and the seasonality
and high silt load of the river present a management challenge
in Sudan (Blackmore and Whittington, 2008). One of the most
dramatic impacts of the GERD, after the reservoir is filled,
will be the reduction of variability in the Blue Nile River
downstream of the GERD site. This change in seasonality and silt
load of flows will have substantial implications for downstream
countries (Satti et al., 2015).
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FIGURE 1 | The Nile Basin (yellow), including the GERD site (orange star), and

GERD catchment (green).

Statistically-Based Models to Forecast
Rainfall
We adapted four statistically-based forecast models that are
published in the peer reviewed literature, but are not operational,
and four of our own statistically-based models (Table 1). For
the already published statistical approaches, which are detailed
next, we refit the models to be specific to the basin upstream
of the GERD using a consistent suite of datasets for the
period from 1982 to 2017. Gissila et al. (2004) developed a
linear regression model which predicted summertime Ethiopian
rainfall as a function of western Indian Ocean sea surface
temperature (SST) and tropical Pacific Ocean SST (Niño 3.4
region). The regression model developed by Korecha and
Barnston (2007) relied on tropical Atlantic Ocean SSTs as
well as Niño 3.4 SST. They found a positive relationship
between East African rainfall and springtime cooling in the
Niño 3.4 region, thus their model also captured the evolution
of SSTs across the months leading up to the rainy season. The
regression model created by Nicholson (2014) was based on
predictors of SST gradients in the tropical and subtropical Pacific

Ocean, zonal wind strength related to the Tropical Easterly
Jet, and tropical Indian Ocean sea level pressure (SLP). The
fourth published statistical model we used, Segele et al. (2015),
calculated the mean of an ensemble of regression models with
atmospheric predictors during the March preceding each rainy
summer season.

Our own statistical models (Alexander2018, Blum2018_1,
Blum2018_2, andWu2018) relied on similar predictors included
in the published-models and employed a range of regression
approaches. Alexander2018 relied on a principal component
regression with SST and SLP predictors, retaining the first two
principal components (Alexander et al., 2019). Blum2018_1 and
Blum2018_2 were both simple linear regression models with
differing calibration periods: Blum2018_1 was fit using the full
record of data (1982–2017), whereas Blum2018_2 was fit only
on the most recent years (2000–2017) because the relationship
between climate predictors and rainfall in the GERD basin may
have shifted. A step-wise procedure was used to select predictors
from the range of predictors included in the published literature.
Wu2018 adapted a Linear Inverse Model to the region which
is described in Wu et al. (2018). To create “ensembles” for the
statistical models which predicted a single value, we randomly
selected residuals from the fitting of each regression model 100
times (with replacement) and added these to the model forecast.

To fit these statistical models, we used June–September
total rainfall from the Climate Hazards InfraRed Precipitation
with Stations dataset (CHIRPS; Funk et al., 2015), as the
predictand. Combining high resolution (0.05◦) rainfall with
current satellite-derived estimates of rainfall, CHIRPS has
been demonstrated to provide reliable rainfall estimates in
the Ethiopian highlands (Dinku et al., 2018). We used
a combination of predictors from National Centers for
Environmental Prediction (NCEP) and National Center for
Atmospheric Research (NCAR) reanalysis product (https://www.
esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml) and North
American Multi-Model Ensemble (NMME) lag-0 forecast
products (Kirtman et al., 2014), referring to forecasts for May,
made in May of the predictor variables (Table 1). When fitting
these models, we used a cross validation approach of iteratively
leaving out each year to assess out-of-sample predictive accuracy.
The period 1982–2017 was used for validation as it represented
the longest record with available data to inform both statistical
and dynamically-based models.

Dynamically-Based Forecasts
We also obtain dynamically-based seasonal forecasts from eight
models participating in the NMME (Kirtman et al., 2014) which
are all based on dynamic global climate models. We selected
these models as we could obtain both historical and operational
forecasts. We extracted the gridded rainfall field from each
NMME model for the GERD basin, summed across the basin,
and then adjusted for bias on the basis of historical GERD
basin rainfall estimates drawn from CHIRPS dataset using the
delta change approach (Maraun, 2016). The NMMEmodels each
include between 4 and 24 ensemble members (Table 2), and each
ensemble member was treated as an independent prediction.
These NMME forecasts can be considered to be “operational” as
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TABLE 1 | Statistical models used in this study.

Authors (year)

Model structure

Predictor variables used

(Gissila et al., 2004)

Multivariate linear regression

- March, April, May SST for tropical western Indian Ocean, 10◦S−10◦N, 50–70◦E, tropical eastern Indian Ocean,

10◦S−0, 90◦ − 110◦E and Nino3.4 5◦S−5◦N, 170◦W−120◦W

(Korecha and Barnston, 2007)

Multivariate linear regression

- The difference of May minus February–March SSTs over the south Atlantic, 30◦S−40◦S, 30◦W−15◦W

- The difference of May minus the February–March Niño-3.4 SST, 5◦N−5◦S, 170◦W−120◦W

- May Niño-3.4 SST, 5◦N−5◦S, 170◦ − 120◦W

(Nicholson, 2014)

Multivariate linear regression

- May u 200 hPa, 30◦E−50◦E and 0◦ − 10◦N

- May difference in SST: (170◦ − 265◦E, 5◦S−5◦N)—(137◦E−160◦E, 18◦N−28◦N)

- May sea level pressure (SLP) for 80◦ − 90◦E, 5◦ − 15◦N

(Segele et al., 2015)

Mean of 11 multivariate linear

regression models

20 predictors from Table 1.

Alexander—this study (and Alexander

et al., 2019)

Principal component regression

- First two principal components of May Tropical Pacific Ocean SST (90◦W−180◦W, 5◦N−5◦S), March–Feb Central

Indian Ocean SST (50◦E−80◦E, 0◦ − 15◦S), April Tropical Atlantic SST (10◦W70◦W, 10◦N−10◦S), and Indian

Monsoon SLP Index (30◦E−80◦E, 20◦S−35◦S−70◦E−90◦E, 20◦N−30◦N)

Blum-1—this study

Multivariate linear regression

- May SST for tropical western Indian Ocean, 10◦S−10◦N, 50◦E−70◦E

- May sea level pressure (SLP) for 80◦E−90◦E, and 5◦N−15◦N

- May difference in SST: (170◦E−265◦E, 5◦S−5◦N)–(137◦E−160◦E, 18◦N−28◦N)

- Southern Europe air temperature at 100 hPa, 10◦E−15◦E, 45◦N−50◦N

- North Arabian Sea March meridional temperature flux at 925 hPa, 60◦E−65◦E, 20◦N−25◦N

Blum-2—this study

Multivariate linear regression (fit based

on 2001–2017)

- Eastern Indian Ocean zonal geopotential height flux at 300 hPa, 80◦ − 85◦E, 5◦S−0◦

- Arabian Sea meridional moisture flux at 925 hPa, 60◦ − 65◦E,10◦ − 15◦N

- North tropical Pacific SST, 171◦E−175◦E, 16◦N−18◦N

- Southeastern Europe zonal temperature flux at 100 hPa, 25◦E−30◦E, 40◦N−45◦N

Wu—this study

Linear inverse model

- May, June, July, Aug, and Sep EOFs of Local rainfall, Tropical Pacific SST(120◦E−290◦E, 20◦S−20◦N), Tropical

Atlantic SST(70◦W−30◦E, 20◦S−20◦N), Indian Ocean SST(30◦E−120◦E, 20◦S−20◦N), North Pacific

SST(120◦E−290◦E,20◦N−60◦N), North Atlantic SST(70◦W−30◦E, 20◦N−60◦N), Southern Ocean SST(0◦ − 360◦,

60◦S− 20◦S), Global 850 hPa and 200 Geopotential height(0◦–360◦,60◦S−60◦N)

P_JJAS, Sum of rainfall for June, July, August, and September; SST, Sea Surface Temperature; All variables (predictors and predictand) were standardized by subtracting the mean

and dividing by standard deviation for 1982–2017. Note that, in applying previously published models, we retain their structure and list of candidate predictors, but coefficients and, in

some cases, selected variables are different from the originally published versions.

TABLE 2 | North American Multi-Model Ensemble (NMME) Models included in this

study and number of ensembles for each model; more details on model resolution

and hindcast period available from Kirtman et al. (2014).

NMME model Number of ensembles

CMC1-CanCM3 10

CMC2-CanCM4 10

COLA-RSMAS-CCSM4 10

GFDL-CM2p1-aer04 10

GFDL-CM2p5-FLOR-A06 12

GFDL-CM2p5-FLOR-B01 12

NASA-GEOSS2S 4

NCEP-CFSv2 24

they are routinely produced and publicly accessible. Historical
forecasts for 2011 and 2017 were unavailable for all NMME
models so our evaluation period for these models included 1982–
2010 and 2012–2016.

Upper Blue Nile Streamflow Forecast
To convert our rainfall forecasts to Upper Blue Nile streamflow
forecasts, we applied the water balance model “WatBal”

(Yates, 1996; Zhang et al., 2015) which converts monthly rainfall,
monthly mean temperature, and diurnal temperature range
averages into monthly streamflow. As the original WatBal model
has been shown to replicate well the historical streamflow at the
Upper Blue Nile Basin (Yates and Strzepek, 2002; Zhang et al.,
2015), we retain the published model parameters which can be
found in Yates (1996). We used Climate Research Unit data
(CRU; Version 3.20, 1901–2014) for monthly mean temperature
and diurnal temperature range averages (Harris et al., 2014). To
calibrate the hydrological model, we used both CenTrends and
CHIRPS rainfall data because CenTrends is available for a longer
period of record (1900–2014) and is nearly identical to CHIRPS
across the overlapping period (1982–2014). After adjusting the
CenTrends rainfall data using a regression to match CHIRPs,
we calibrated the water balance model against streamflow
observations at the El Diem site for 1965–2009. The El Diem
river gauge is located at the Sudan/Ethiopia border, adjacent to
the GERD site (Figure 1). The monthly time series between the
predictions and historical record show a correlation of 0.96 (p
< 0.0001). Annually, we find that predicted streamflow is about
4% higher than the observed streamflow, with overestimation
generally occurring during January–August and underestimation
later in the year (Figure 2). To estimate the streamflow forecasts
in June–December 2018, we disaggregated the June–September
(JJAS) rainfall forecasts to a monthly scale, applied WatBal to
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generate monthly forecasts of streamflow for those months, and
used climatological monthly rainfall for October–December of
2018. We made predictions of streamflow through December
2018 because October–December months also include relatively
high streamflow, due to the lagged relationship with rainfall.

Communication of Consensus Forecast in
an Online Blog
As our aim was to inform the regional conversation about filling
of the GERD reservoir, we wanted to provide the seasonal forecast
in a timely manner. We thus decided that a blog would be the
best way to quickly make our forecast widely available to anyone
who might be interested. As our target audience was rather
small and specific—experts involved in water resource analysis
and decision making in East Africa—we chose to distribute the
post through the Climate Hazards Center blog (http://blog.chg.
ucsb.edu/), which frequently releases climate and food and water
security analyses for East Africa and is associated with the Famine
Early Warning System (FEWS) Network.

Following background on the area of study, the blog shows a
series of comparative figures illustrate the probabilistic forecast
for 2018. Accompanying text provides a high-level summary of
methods used to develop the rainfall and streamflow forecasts
and highlights the categorical predictions for the coming rainy
season. The explanation of methods and results in the blog
may have been more technical than a general public audience
would desire; however, this information was included for its
potential value to aid understanding by watermanagers and other
decision-makers in the region with relevant expertise. Our hope
was that the overview figures and summary text were accessible
to most blog visitors and provided a sense of the likely conditions
for the upcoming season.

Evaluation of Model Performance,
Forecast, and Blog Communication
To evaluate and compare model performance, we generated
hindcasts of June–September rainfall for 1982–2017. For each
model, we estimated anomaly correlation coefficient (ACC)
as a measure of linear relationships between predictions and
observations, root mean square error (RMSE) of anomalies to
quantify errors in variance and bias, Hit Score estimating the
fraction of predictions that fell into the correct category over
the period of analysis, and a Hit Score for Extremes, the hit
rate for only top and bottom tercile events (Wilks, 2006). For
the statistical models, all scores are for cross-validation out-
of-sample predictions in which each year was predicted by a
model was fit excluding that year to be a fair comparison to a
future forecast.

At the end of the rainy season, we conducted both quantitative
and qualitative assessments to evaluate our forecast as well
as our communication through the blog. For our quantitative
evaluation of the rainfall forecast, we compared the percent bias
of each of our 16 forecasts to the observed rainfall in the Upper
Blue Nile during the summer of 2018. We also compared the
overall performance of statistical verses NMME forecasts. While
we used historical streamflow data to calibrate our streamflow

model, we did not have access to observed 2018 streamflow data
so focus our evaluation on the rainfall forecasts.

Given our aim of informing discussions regarding the
GERD reservoir filling, we also solicited feedback from
thirteen regional decision-makers and experts with an
online questionnaire. The questionnaire focused on aspects
of the forecast presented on the blog which they found
to be most useful or interesting, areas for improvement,
and suggestions for improving dissemination of future
blog forecasts. These questionnaires also included some
background questions related to how often the respondents used
seasonal forecasts and where they had obtained the forecasts
they used.

RESULTS: FORECAST AND EVALUATION

Hindcast and Evaluation of Forecast
Models
Model hindcasts indicate that the statistical approaches had
moderate skill due to some unexplained variance, but also that
skillful predictions could be obtained using a number of different
model structures and predictor sets (Table 3 and Figure 3).
The NMME models varied more widely in their performance,
consistent with previous work on ensembles of dynamically-
based prediction systems (Shukla et al., 2016). The average across
the NMME ensemble did provide a respectable performance
comparable to many statistical approaches. Some NMMEmodels
initially had large biases, however we corrected for this bias (as
described in the section on Dynamically-Based Forecasts) which
does not affect the application of the models to study anomalies.

Forecast for 2018
On May 18, 2018, we released our forecast with the headline
“Average to above average Blue Nile Streamflow expected in
2018” (http://blog.chg.ucsb.edu/?p=364). The main message of
the blog was that our multi-method seasonal forecast ensemble
showed a strong likelihood of a normal or wet year for the Upper
Blue Nile in 2018. Predictions of a relatively wet summer were
informed by being in the waning months of a La Niña event,
and our forecast was consistent with regional seasonal outlooks
issued by independent modeling centers such as Columbia
University’s International Research Institute for Climate and
Society (IRI, 2018).

All except for one of our 16 models predicted near- or above-
normal conditions for 2018 (Figure 4). While summarizing the
range of forecasts in an easily interpretable figure, Figure 4 has
limitations as this simple figure does not include uncertainty
associated with individual models. It is thus important to look
also to the boxplots shown in Figure 5, which give a better sense
of the uncertainty associated with individual predictions. Each
boxplot for the NMME models depicts the range of forecast
ensemble spread and, for the statistical models, predictions
including a resampling of model residuals. Figure 5 illustrates
that while both statistical and dynamical models suggested a
strong likelihood of average to above average rainfall in the

Frontiers in Water | www.frontiersin.org 5 July 2019 | Volume 1 | Article 3

http://blog.chg.ucsb.edu/
http://blog.chg.ucsb.edu/
http://blog.chg.ucsb.edu/?p=364
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Blum et al. Communicating and Evaluating GERD Forecasts

TABLE 3 | Evaluation of statistical and dynamically-based rainfall hindcasts for the period 1982–2017 (for NMME models only 1982–2010 and 2012–2016 were available

for all models).

Models ACC RMSE (mm) BIAS (mm) HitScore HitScore: extremes

Statistical models

Gissila2004 0.36 72.7 −2.1 0.50 0.52

Korecha2007 0.52 62.3 −0.1 0.44 0.52

Ncholson2014 0.56 60.1 0.4 0.47 0.52

Segele2015 0.47 64.8 1.0 0.47 0.52

Alexander—this study 0.70 52.2 −3.5 0.61 0.70

Blum-1—this study 0.70 51.7 1.0 0.58 0.65

Blum-2—this study 0.43 67.1 1.1 0.39 0.48

Wu—this study 0.66 55.7 −1.4 0.64 0.70

Mean statistical model 0.66 56.7 −2.8 0.58 0.65

CMC1-CanCM3 0.23 89.5 485.8 0.35 0.45

CMC2-CanCM4 0.58 95.3 547.8 0.59 0.64

COLA-RSMAS-CCSM4 -0.08 80.3 −284.8 0.29 0.27

GFDL-CM2p1-aer04 0.29 73.5 −113.5 0.38 0.41

GFDL-CM2p5-FLOR-A06 0.19 72.3 98.3 0.47 0.50

GFDL-CM2p5-FLOR-B01 0.41 65.6 84.3 0.56 0.59

NASA-GEOSS2S 0.49 105.7 −281.1 0.44 0.55

NCEP-CFSv2 0.33 84.4 103.6 0.44 0.50

Mean NMME 0.55 57.9 80.1 0.62 0.68

The mean for climatology is 972mm with a standard deviation of 73mm. Hit Score is calculated by dividing the observational record into three terciles (below normal, near normal, and

above normal) and calculating the fraction of predictions that fell into the correct category over the period of analysis. Hit Score for Extremes considers only the hit rate for top and

bottom tercile events. All scores are for cross-validation out-of-sample predictions (leave-one-out).

FIGURE 2 | Calibrated streamflow from WatBal, monthly average streamflow (1965–2009) based on observations at El Diem site close to construction of the GERD,

and climatological monthly average rainfall for the GERD catchment area (CenTrends data). Months are numbered starting in January (month 1) to December (month

12) and streamflows are in billions of cubic meters per month.

GERD basin in 2018, these models did so with varying degrees
of uncertainty.

Across the statistical approaches, there were model
forecasts falling within all three terciles, which were
defined based on climatology for 1982–2017. In contrast,
the majority of the forecasts for the dynamically-based
NMME models fell within the top tercile. Variability in

forecasts across different NMME models reflects both
differences in rainfall variability between models as well
as in differences in the 2018 forecast relative to each
model’s historical record. Additionally, ensemble spread
within a given NMME model is also substantial, with a
few ensemble members of several models forecasting below
average rainfall.
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FIGURE 3 | 1982–2017 hindcasts for June–September Upper Blue Nile GERD basin rainfall. Light blue lines are statistical models, with the darker blue line showing

the ensemble average of statistical models applied in this project. Green lines are NMME forecasts initialized in May of each year—each light green line is the ensemble

average of a single model and the dark green line is the full NMME ensemble average for all models that had complete data records (other than 2011 and 2017 which

were unavailable for all models). The black line shows the CHIRPS total June–September rainfall in each year and the gray horizontal line shows the average across

the record.

FIGURE 4 | Percentage of forecasts in this study predicting below normal, near normal, and above normal June–September rainfall (Left) and June-December

streamflow at the GERD site (Right) for 2018, including eight NMME models (ensemble mean for each model) and eight statistical models. NMME forecasts are

adjusted for mean biases. No variance adjustment was applied to any of the model forecasts.

Frontiers in Water | www.frontiersin.org 7 July 2019 | Volume 1 | Article 3

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Blum et al. Communicating and Evaluating GERD Forecasts

FIGURE 5 | Boxplots (representing the 25th−75th percentiles and with whiskers extending to 1.5 times this interquartile range) of rainfall forecasts by model,

illustrating NMME ensemble spread and statistical models prediction with 100 randomly-selected residuals. Dashed lines show below/above normal conditions.

Statistical boxes represent range of 2018 forecast plus 100 resampled errors (from 1982 to 2017 leave-one-out predictions).

Evaluation of Forecast
Observed rainfall (from CHIRPS) for the GERD basin in June–
September 2018 was near-normal at 963mm (Figure 6A), very
slightly below the long termmean of 971mm, and corresponding
to estimated streamflow of just over 41 billion m3/month
(Figure 6B). Near-normal categories are often the most difficult
for prediction models given minimal signals from dominant
large-scale climate phenomena. Over half of the statistical models
accurately predicted this “near normal” category for streamflow,
though only a quarter of the NNMEmodels did so. Two statistical
models, Nicolson2014 and Alexander2018, provided a forecast
that was closer to the 2018 rainfall observation than the long
term average (1982–2017). Looking at percent bias (Figure 7),
we again see that the statistical models showed the lowest bias
overall, though a few NMME models also showed relatively low
bias. Also, we find that 15 of the 16 models had a positive
bias reflecting overprediction by most models compared to
observed conditions.

Half-way through the summer, we released an update to
the blog (http://blog.chg.ucsb.edu/?p=419). At this point, El
Niño conditions were beginning to emerge and, as a result,
July NMME forecasts were generally lower compared to their
corresponding May forecasts (Figure 8). About half of these July
NMME forecasts were relatively accurate, however, the other half
were less accurate compared to the May forecasts.

Regional Reception of the Blog
Visits to our blog peaked in May 2018, following publication of
the blog on May 23, 2018, with a total of 345 visitors during that
month. The blog was re-published on a number of other websites,
including the blog of a former US ambassador to Ethiopia
(Immediate Outlook for Filling Grand Ethiopian Renaissance
Reservoir, 2018).

The forecast was also covered in the Ethiopia Observer, a local
newspaper, in a story entitled “Study predicts strong 2018 Blue

Nile Flow as Ethiopia prepares to start filling GERD reservoir”
(Davison, 2018). Within the context of Ethiopia’s plan to start
filling the reservoir that year, the article noted that Egypt,
Ethiopia, and Sudan were still discussing how to mitigate risk.
The article’s major take away from the blog was that “experts
predict only 6% chance of low Blue Nile Flow.” Focus on this
value suggests that it will be critical to report the chance of
low conditions as accurately as possible and with appropriate
uncertainty in future forecasts.

Five of the thirteen regional experts to whom we sent the
online questionnaire responded. Overall, respondents reported
that the blog contained useful information not available from
other products, in particular the prediction of Upper Blue Nile
streamflow. They also expressed interest in longer lead time of
the forecast: the blog was released mid-May for the upcoming
June-September rainfall and June-December Upper Blue Nile
streamflow to the GERD site. Additionally, respondents cited
several barriers to the use of such forecasts for decision-making
including access to information, limitations of short lead times,
and scientific understanding. Multiple respondents noted the
need for greater capacity building on this topic.

DISCUSSION

Filling the reservoir of the Grand Ethiopian Renaissance Dam
(GERD) will have economic, social, and political implications
for the region. As a group of scientists working outside of the
region and drawing upon published forecast methods, we aimed
to provide a forecast to complement and support high quality
forecasts produced in the region. To make our forecast more
accessible, we released it as a publicly available blog. Forecasts
used by regional decision-makers often come from a national
meteorological agency within a country, which can lead to real
or perceived political influence on the forecast, as well as the
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FIGURE 6 | (A) Boxplots of June-September historical rainfall, 1982–2017, according to CHIRPS rainfall estimates (gray), and of the 2018 forecasts for

dynamically-based models participating in the North American Multimodel Ensemble (NMME; green) and for statistically-based models applied in this study (blue).

Dashed lines show the upper and lower terciles of historical rainfall totals and percentages indicate the percent of each streamflow within each tercile, corresponding

to the closest box and with matching color. (B) As in (A), but for the June–December 2018 calibrated and forecast Upper Blue Nile streamflow at the GERD site.

potential for contradictory forecasts issued by different countries.
Our forecast was intended as politically neutral backstop to
national agency forecasts to support negotiations regarding filling
of the GERD.

While the predictive power of both dynamic and statistical
predictions continues to improve, uptake and use of forecasts by
the intended users often remains limited (Pfaff et al., 1999; Vogel
andO’Brien, 2006; Harrison et al., 2008; Gilles andValdivia, 2009;
Lemos et al., 2012). Communication literature has repeatedly
suggested numerous challenges that hinder uptake, including:
concerns over forecast skill, uncertainty in the forecast, and
social, cultural, political, and institutional barriers to forecast
use (Roncoli, 2006; Millner and Washington, 2011; Kiparsky
et al., 2012). The lack of predictions at a sufficient spatial or
temporal resolution, the form or format of the predictions, and
poor availability/access to predictive information are further
challenges (Ziervogel and Calder, 2003; Plotz et al., 2017).
Our forecast thus aimed to fill this gap of providing an easily
accessible, operational forecast specifically for the GERD basin

that leverages the findings from published but non-operational
statistical forecast approaches as well as an ensemble of forecasts
from dynamic global climate models.

Recent studies have emphasized decision-makers’ interest
in scientifically developed forecasts as traditional forecasting
methods become less reliable, increasing attention to the
communication and integration of seasonal climate forecasts
(Ingram et al., 2002; Plotz et al., 2017). However, it can be
challenging to balance interpretability with sufficient scientific
details as the amount of information needed for individuals
to make a decision varies widely (Ziervogel and Calder,
2003). Additionally, effective communication of probabilistic
information is a particular challenge (Millner and Washington,
2011). By combining high level overviews and figures with
relevant technical information, our blog attempted to appeal
to a wide range of decision-makers with interest in GERD
water management.

While we had information about the number of visitors to
the blog, we did not have additional data such as the location
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FIGURE 7 | Percent bias of each 2018 GERD inflow streamflow forecast relative to 2018 estimated streamflow of 41,180 million m3/month (based on observed

CHIRPS rainfall). Numbers at the top of the bars give the % bias associated with each forecast. The bar labeled NMME refers to the mean of all NMME predictions

and the bar labeled Statistical_Mean refers to the mean of all of the statistical models.

FIGURE 8 | Comparison of GERD basin June–September 2018 rainfall forecasts forecasted in May 2018 (also plotted in Figure 5) and in July 2018. The horizontal

purple line indicates CHIRPS estimate of total rainfall 963mm.

of blog visitors which would have helped us assess the blog’s
impact. Additionally, use of an online questionnaire to obtain
feedback from regional decision-makers limited the scope of

questions we could ask as well as the information we could
obtain. Future evaluation of these sorts of communication
tools could look to the variety of methods available to
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assist the dissemination of predictive climate information,
including participatory methods, workshops, focus groups and
semi-structured interviews (Ingram et al., 2002; Roncoli, 2006).
Challenges also remain regarding dissemination of the forecast
to the relevant decision-makers as well as creating a forecast that
meets the scientific demands of stakeholders while remaining
clear and understandable to a non-scientific audience. If some
decision-makers (or the media) are only interested in one
number, such as the probability of an adverse outcome, perhaps
that value should be a focus for future forecasts. Yet, for decision
makers who are technical experts in water management, a more
detailed and comprehensive predictionmay be warranted to have
value in their decision-making. Finally, careful communication
of uncertainty in such forecasts is critical as over or under
predictions could both result in harmful consequences.

There also were some limitations and challenges in the
creation of our probabilistic forecast. We included a range of
forecast types, but were still limited by the 16 statistical and
dynamical models that we selected. The statistical approaches
were sensitive to calibration period, which can be problematic
if relationships between the predictors and predictand used
in published literature are not stationary (Gissila et al., 2004;
Korecha and Barnston, 2007; Segele et al., 2015; Nicholson, 2017).
As the ENSO teleconnection to the Upper Blue Nile basin is
not fully understood, and appears it may be changing over time,
this is an important area of ongoing research. The dynamically-
based models suffer from uncharacterized spatial biases and
the limitations of forecasting an imperfectly-understood system.
Additionally, there are challenges associated with summarizing
the results of both statistical and dynamical models in a
single figure as the dynamical forecasts come from multiple
ensemble members whereas the statistical models produced a
single forecast.

Due to the filling of GERD, some have predicted that a
“period of contentious diplomacy lies ahead” (Benaim and
Hanna, 2018). Ethiopia’s decisions regarding filling of the
GERD—including both timing and speed—will depend on many
factors beyond seasonal Nile River flow forecasts. Nevertheless,
operationalizing published forecast models for the Upper Blue
Nile River have the potential to support filling decisions by
providing stakeholders with a common set of expectations for
water availability. Consensus seasonal hydrological forecasts

can inform those expectations annually to ease one source of

regional tension during the filling of the GERD reservoir. A
conflict over the GERD could reverberate across the greater
East Africa—Middle East region, and potentially beyond. When
filling of the GERD reservoir begins, a shared understanding of
Upper Blue Nile rainfall and streamflow can support a regional
conversation to mitigate risk. With climate change, managing
transboundary water resources is becoming even more difficult.
Non-traditional approaches to communicating scientific findings
have the potential to support peaceful and effective management
of these resources.
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